pytorch 基础
数据
PyTorch 有两个用于处理数据的基元: torch.utils.data.DataLoader
和 torch.utils.data.Dataset
Dataset
存储样本及其相应的标签,DataLoader
则将一个可迭代对象封装在 Dataset
周围
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
PyTorch 提供特定于域的库,例如 TorchText、TorchVision 和 TorchAudio,所有这些库都包含数据集。以 TorchVision) 中的 FashionMNIST 数据集为例:
每个 TorchVision Dataset
都包含两个参数:transform
和 target_transform
,分别用于修改样本和标签:
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
在我们的数据集上封装一个可迭代对象:将 Dataset
作为参数传递给 DataLoader
—— 支持自动批量处理、采样、洗牌和多进程数据加载。
batch size 定义为 64:数据加载器可迭代对象中的每个元素将返回 a batch of 64 features and labels
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])
Shape of y: torch.Size([64]) torch.int64
[N, C, H, W]
是描述张量(tensor)形状的常用表示方式,具体含义如下:
- N (Batch Size): 当前批次中的样本数量
- C (Channels): 图像的通道数(例如:灰度图为1,RGB彩色图为3)
- H (Height): 图像的高度(像素数)
- W (Width): 图像的宽度(像素数)
模型
在 PyTorch 中定义神经网络需创建一个继承自 nn.Module 的类 —— 在 __init__
函数中定义网络的层,并在 forward
函数中指定数据如何通过网络。
为了加速神经网络中的运算,可将其移动到 加速器(如 CUDA、MPS、MTIA 或 XPU)
device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten() # 将 [B,C,H,W] 展平为 [B,C*H*W]
self.linear_relu_stack = nn.Sequential( # 按顺序堆叠多个层
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10) # 10 维对应 MNIST 的10个类别。
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model) # 输出模型结构
Using cuda device
NeuralNetwork(
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear_relu_stack): Sequential(
(0): Linear(in_features=784, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=10, bias=True)
)
)
优化模型参数
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
一个训练循环中,模型对训练数据集(以批次形式输入)进行预测,然后通过反向传播预测误差来调整模型的参数。
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 整个数据集的总样本数
model.train() # 将模型设置为训练模式
# 每次迭代返回一个batch索引和数据(X, y)(特征和标签)
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
# len(X)为 batch 的样本数,current 计算的是当前已经处理了多少个样本
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
评估模型在测试集上的性能(计算准确率和平均损失):
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval() # 将模型设置为评估模式
test_loss, correct = 0, 0
with torch.no_grad(): # 在评估时不计算梯度(不需要反向传播),节约内存
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
# pred.argmax(1):获取预测的类别
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
训练过程会进行多次迭代(epochs,即周期):
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.303494 [ 64/60000]
loss: 2.294637 [ 6464/60000]
loss: 2.277102 [12864/60000]
loss: 2.269977 [19264/60000]
loss: 2.254234 [25664/60000]
loss: 2.237145 [32064/60000]
loss: 2.231056 [38464/60000]
loss: 2.205036 [44864/60000]
loss: 2.203239 [51264/60000]
loss: 2.170890 [57664/60000]
Test Error:
Accuracy: 53.9%, Avg loss: 2.168587
Epoch 2
-------------------------------
loss: 2.177784 [ 64/60000]
loss: 2.168083 [ 6464/60000]
loss: 2.114908 [12864/60000]
loss: 2.130411 [19264/60000]
loss: 2.087470 [25664/60000]
loss: 2.039667 [32064/60000]
loss: 2.054271 [38464/60000]
loss: 1.985452 [44864/60000]
loss: 1.996019 [51264/60000]
loss: 1.917239 [57664/60000]
Test Error:
Accuracy: 60.2%, Avg loss: 1.920371
Epoch 3
-------------------------------
loss: 1.951699 [ 64/60000]
loss: 1.919513 [ 6464/60000]
loss: 1.808724 [12864/60000]
loss: 1.846544 [19264/60000]
loss: 1.740612 [25664/60000]
loss: 1.698728 [32064/60000]
loss: 1.708887 [38464/60000]
loss: 1.614431 [44864/60000]
loss: 1.646473 [51264/60000]
loss: 1.524302 [57664/60000]
Test Error:
Accuracy: 61.4%, Avg loss: 1.547089
Epoch 4
-------------------------------
loss: 1.612693 [ 64/60000]
loss: 1.570868 [ 6464/60000]
loss: 1.424729 [12864/60000]
loss: 1.489538 [19264/60000]
loss: 1.367247 [25664/60000]
loss: 1.373463 [32064/60000]
loss: 1.376742 [38464/60000]
loss: 1.304958 [44864/60000]
loss: 1.347153 [51264/60000]
loss: 1.230657 [57664/60000]
Test Error:
Accuracy: 62.7%, Avg loss: 1.260888
Epoch 5
-------------------------------
loss: 1.337799 [ 64/60000]
loss: 1.313273 [ 6464/60000]
loss: 1.151835 [12864/60000]
loss: 1.252141 [19264/60000]
loss: 1.123040 [25664/60000]
loss: 1.159529 [32064/60000]
loss: 1.175010 [38464/60000]
loss: 1.115551 [44864/60000]
loss: 1.160972 [51264/60000]
loss: 1.062725 [57664/60000]
Test Error:
Accuracy: 64.6%, Avg loss: 1.087372
Done!
保存模型
保存模型的常用方法是序列化内部状态字典(包含模型参数):
torch.save(model.state_dict(), "model.pth")
加载模型
加载模型的过程包括 **重新创建模型结构 **并 将状态字典加载到其中:
model = NeuralNetwork().to(device)
model.load_state_dict(torch.load("model.pth", weights_only=True))
<All keys matched successfully>
然后该模型就可以用于进行预测:
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
x = x.to(device)
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
Predicted: "Ankle boot", Actual: "Ankle boot"