Below you will find pages that utilize the taxonomy term “NLP”
February 9, 2025
MLLM
1基础
1. 特征提取
一、CV中的特征提取
1. 传统方法(手工设计特征)
(1) 低级视觉特征:颜色、纹理、 边缘与形状…
(2) 中级语义特征:SIFT(尺度不变特征变换)、SURF(加速鲁棒特征)、LBP(局部二值模式)…
2. 深度学习方法(自动学习特征)
(1) 卷积神经网络(CNN)
核心思想:通过卷积层提取局部特征,池化层降低维度,全连接层进行分类。
经典模型:LeNet-5、AlexNet、VGGNet、ResNet(使用残差可以训练更深的网络)…
(2) 视觉Transformer(ViT)
- 核心思想:将图像分割为小块(patches),通过自注意力机制建模全局关系。
- 优势:无需局部卷积先验,直接建模长距离依赖; 在ImageNet等任务上超越传统CNN。